*3STaM 30401 dY3] UO pajunou
wo3s4s UOTSTA dwWFl-Tea1 pue Si19IndwoD0IDTW JO }iomidu B Jufsn €30qox YdIpdsai B U0 pajudweTduy ussq sey WalIsAs STWL

*I0TABYDSQ PO3I031TP-TEOS UOTIORI2IUT-AIOSUDS D31BI2UDZ 03 Se Os S3TIa3eIls uoTlIsoduooap sel

S3T AJTpow 03 AydieAdTY TOIJuod Y3l £q pIsn ST BIBP PIAIDSQO pue paldadxe UsIMISqQ SUOTIBTAI(Q *fyo1eaapy Suisssooad
K1osuas ay3 JO TOA9[YOBD 3B ®BIEp AI0SUdS 33 jsujelde paiedwod aie IS ssuofieildadxe sajersuad yomm Ayodieisy
I9pow pyiom ® ST PATYL °*IUSWUOITAUD o3 WOl EIEp SISATeRUE IEY] AYdIBIATY Suissoooad Li10suds B ST pPuOdIIg *SUOTIOE
aaTaTwrad ojuf syse3 [oA°T Y38 sosodwodep YOTYM AYdIeIaTY TOIJUOD B ST ISATJ °STYIIBIOYY pa1dnoo ssoad ayreaed
991y3 JO SISTSUOD vyl W23SAS TOIJuOd B SaqTidsop iaded sTL *s9TIT[Iqeded Liosuas 3aey Jeyl SwWa3SAsS TOIJUOD Y
paddynba aq 3snu Lay3 ‘Sutanidejnuem JO JUSWUOITAUD pauleajsuocdun £1Te13aed oyl uy A]9AT3I0933F° 93e19d0O 031 S30QOX 104

$€20Z *0°a ‘uoldumyseM ‘SgN ‘(1) Sunox *g °*¥ £q p23ITuUqNg
¥¥UBWYSEN UKTTIBH PUB ©,yPTBI0823Td °T °W ‘yyBi0qieg °[Luoyuy ‘xxSNqTy °S Sauwer

53070y 9AT3ORISIUT L10SUIS

I. Introduction

In order for robots to operate effectively in the partially
unconstrained environment of manufacturing, they must be equipped
with control systems that have measurement and sensory cap-
abilities. But more than just sensory data is required. The
data must be processed and analyzed. and the results introduced
into the robot control system in real-time so that the response
is goal-directed, reliable, and efficient. This is a problem
in which complexity grows exponentially with the number of sensors
and with the number of branch points in the control progran.
Once there are more than a few sensors, each producing data which
can modify the robot's behavior or select among a number of
optional behavioral patterns (or trajectories), control programs
can become enormously complex to write and virtually impossible
to debug.

It is at this point that the problem of controlling a sensory
interactive robot becomes similiar to that of controlling any
complex system such as an army, a government, a business, or a
biological organism. It then becomes necessary to introduce the
type of hierarchical command and control structure which has
historically proven itself successful in controlling such
systems [1]. The secret of hierarchical control is that it
allows the problem to be partitioned so as to limit the complexity

of any module in the hierarchy to manageable limits regardless
of the conplexity of the entire structure.

I1. PHRierarchical Control
a) The Organizational Hierarchy

Figure 1 illustrates the basic logical and temporal relation-
ships in a hierarchical computing stucture. On the left is an
organizational hierarchy wherein computing modules are arranged
in layers like command posts in a military organization. Each
computing module receives commands from a superior as well as
feedback from subordinates and the environment. It then computes
an appropriate string of subcommands which are issued to a small
and exclusive set of immediate subordinates. In this way a high
level goal is successively decomposed into a number of coordinated
strings of action primitives which produce observable behavior in
accomplishing the goal [2]. 1In a single highest level module, the
goals are selected and the discussions are made which commit the
entire organization to coordinated action.

b) The Computational Hierarchy

Each chain-of-command in the organizational hierarchy con-
sists of a computational hierarchy of the form shown in the
center of Figure 1 [3]. This computational hierarchy contains
three parallel hierarchies: one, a task decomposition hierarchy
which decomposes high level tasks into low level actions; two, a
sensory processing hierarchy which processes sensory data and
extracts the information needed by the task decomposition modules
at each level; and three, a world model hierarchy which generates
expectations of what sensory data should be expected at each
level based on what subtask is currently being executed at that
level.

¢) The Behavioral Hierarchy

The input commands to each of the levels in the computational
hierarchy can be represented as vectors which trace out trajec-—
tories through state—-space as time progresses. This creates a
behavioral hierarchy as shown on the right of Figure 1. The
lowest level trajectories in the behavioral hierarchy correspond

*Contribution of the U.S. National Bureau of Standards, not
subject to copyright.

**Industrial Systems Division, Center for Manufacturing
Engineering, U. S. National Bureau of Standards, Washington,
D.C. 20234.

to obserable output behavior, e.g. the time history of the joint
position of a robot manipulator. All the other trajectories
constitute the deep struction of behavior. For example second
level trajectories correspond to x,y,z position, velocities, and
forces of the robot hand. The third level trajectories correspond
to sequences of symbolic names of elemental moves such as "reach”,
"grasp”, etc. The fourth level and fifth trajectories corrspond
to sequences of simple and complex task names, respectively.

d) Sensory Processing

The sophisticated real-time use of sensory data for coping
with uncertainty and recovering from errors requires that sensory
information be able to interact with the control system at many
different levels with many different constraints on speed and
timing. For example, joint position, velocity, and sonetimes
force measurements are required at the lowest level in the
hierarchy for servo feedback. This data requires very little
processing, but must be supplied with time delays of only
a few milliseconds. At the action primative 1level, x,y,z
position, velocity, and force data are needed. This requires
a coordinate transformation. Visual depth (proximity) and
information related to edges and surfaces are also needed at
this level to compute offsets for gripping points. This data
requires a modest amount of processing and must be supplied

within a few tenths of a second. Recognition of part position
and orientation requires more processing and is needed at the
elemental move level where time constraints are on the order of
seconds. Part identity and relationships between objects 1is
required for making behavioral decisions at the simple task level.
In general, sensory information at the higher levels is more
abstract and may require the integration of data over longer time
intervals. However, behavioral decisions at the higher levels
need to be made less frequently, and less quickly, and therefore
can tolerate the greater amount of sensory processing required.

Attempting to deal with this full range of sensory feedback
in all of its possible combinations at a single level leads to
extremely complex and inefficient programs. The processing of
sensory data, particularly vision data, is inherently a hierar-
chical process [4]. Only if the control system is also parti-
tioned into a hierarchy can the various levels of feedback
information be introduced into the appropriate control levels in
a simple and straightforward manner.

e) The World Model

Typically, the type of information required by the control
system depends upon what task is being performed. As conditions
change, different sensors, different resolutions, and different
processing algorithms may be needed. Furthermore, sensory data
can often be predicted from the actions being executed by the
control system. The world model hierarchy may contain inform-
ation as to the shape, dimensions, and surface features of parts
and tools and may even indicate their expected position and
orientation in the work enviromment., This information enables
the sensory processing modules to select processing algorithms
appropriate to the expected incoming sensory data, and to cor-
relate observations against expectations [5,6]. The sensory
processing system can thereby detect the absence of expected
events and measure deviations between what is observed and what
is expected.

Feedback can be used by the task decomposition hierarchy
either to modify action so as to bring observations into cor-
respondence with expectations, or to change the input to the
world model so as to pull its expectations into correspondence
with observations [7]. In either case, once a match is achieved
between expectation and observation, the task decomposition
hierarchy can act on information contained in the model. This

means the robot can now act on the basis of knowledge which is
more complete than can be derived from sensory observations.
For example, a robot control system may use model data to reach
behind an ohject and grasp a point which is hidden from view.

III. Programming a Hierarchical Control System

At each level in the task decomposition hierarchy, the string
of commands flowing between the H submodules defines a program.
This implies that there is a programming language unique to each
level of the computational hierarchy, and that the procedures
executed by the computing modules at each level are written in a
language unique to that level. This partitioning of the control
problem into hierarchical 1levels 1limits the complexity of the
programs programs at each level.

a) State-Machine Representation

If we now further partition the robot control problem along
‘the time axis, we can represent each computational submodule as
a state-machine [7]. At every time interval each computational
submodule samples its inputs (command and feedback), and computes
an output. The programs resident in each of the computational
submodules then become simple functions which can be represented
by formulas of the form P=H(s), by a set of productions, or
rules, of the form IF (S)/THEN (P), or by a state-transition
table.

One nethod of implementing the H, M, and G submodules of
Figure 1 is by a state—-table such as shown in Figure 2. Here
the simple task <FETCH(X)> is defined. The lefthand side of the
table consists of a command vector C and a feedback vector F.
The C vector consists of a command FETCH and an argument X. The
F vector consists of a state defined by the previous output plus
a set of feedback variables consisting of processed sensory data
from the external environment as well as progress reports from
lower level modules. The righthand side of the state table
defines (or points to a procedure which defines) an output vector
P which contains commands to lower level H modules, next state
information to be used internally, and action context information
to be sent to M submodules. The action context information
addresses the M submodules which retrieves expectations to be
sent to the G submodules. In this example, when the action
context output is g2, the M submodule tells the G submodules to
expect data related to the orientation of X on a planar surface.
The G submodule then applies an algorithm which computes whether
Orientation (X)<0, or Orientation(X)>0. When the action context
output changes to gl, the G function changes to an algorithm
that computes the distance to X.

Each H submodules contains an entire library of procedures
in an extended state~table. At each clock tick k, the lefthand

side of this state-table is searched for an entry corresponding
to the current input S=C+F. If an entry is found, the first column
in the right side of the state-~table is used as a pointer
to a procedure which computes an output P=H(S). If no entry
can be found, the pointer is set to an error condition and a
procedure is evoked to output the appropriate failure activities.
In most cases, a failure condition will output a STOP command to
the H submodule below and a failure flag to the H submodule above.

b) Prograrmming the State-Machine Robot

Each entry in the state-table represents an IF/THEN rule,
sometimes called a production. This construction makes it poss-—
ible to define behavior of arbitrary complexity. An ideal task
performance can be defined in terms of the sequence of states
and state transition conditions that take place during perfor-
mance., Deviations from the ideal can be handled by simply adding
the deviant conditions to the left hand side of the state-table
and the appropriate action to be taken to the right hand side.
Any conditions not explicitly covered by the table results in an
"I don't know what to do now"” failure routine being executed.
Whenever that occurs, the robot simply stops and asks instruc-
tions. If the condition can be corrected, the operator can
simply enter a few more rules into the state-table and the robot
will continue. By this means, the robot gradually learns how to
handle a larger and larger range of problems.

IV. A Microcomputer Network Implementation

In our laboratory at the National Bureau of Standards Anthony
Barbera and M.L. Fitzgerald have constructed a state-machine
hierarchical control system for a robot in a network of micro-
computers [8,9]. This system maps the computational hierarchy of
Figure 1 into the physical structure of Figure 3, The coordinate
transformations of Figure 1 are implemented in one of the
microcomputers of Figure 3. The elemental move trajectories
are calculated in a second microcomputer of Figure 3. The
processing of the vision data is accomplished in a third micro-
computer, and the processing of force and touch data in a fourth
microcomputer (arm interface.) A fifth wmicrocomputer provides
communication with a minicomputer wherein reside additional
modules of the control hierarchy. It is anticipated that these
will eventually be embedded in a sixth microcomputer.

Communication from one module to another 1is accomplished
through a common memory "mail drop"” system. No two microcomputers
communicate directly with each other. This means that common
memory contains a location assigned to every element in the
input and output vectors of every module in the hierarchy. No
location in common memory is written into by more than one
computing module, but any number of modules may read from any
location.

a) Time Slicing

Time is sliced into 28 millisecond increments. At the
beginning of each increment, each computational module reads
its set of input values from the appropriate locations in common
menory. It then computes its set of output values which it
writes back into the common memory before the 28 millisecond
interval ends. Any of the logical modules which take longer
than the 28 millisecond interval merely wait for the next
occurrence of the synchronization pulse and output during the
write portion of that interval. The process then repeats.

Each logical module is thus a state-machine whose outputs

depend only on 1its present {inputs and its present internal
state. None of the logical modules use any interrupts.
Each starts its read cycle on a clock signal, computes and
writes its output, and waits for the next clock signal. Thus,
each logical module is a state-machine with the IF/THEN, or
P=H(S) properties of an aritlmetic function.

The common memory "mail drop” communication system has a
number of advantages and disadvantages. One disadvantage 1is
that it takes two data transfers to set information from one
module to another. However, this is offset by the simplicity of
the communication protocol. No modules talk to each other so
there is no handshaking required. In each 28 millisecond time
slice, all modules read from common memory before any are allowed
to write their outputs back in.

b) System Extensibility

The use of common memory data transfer means that the ad-
dition of each nmew state variable requires only a definition of
where the newcomer is to be located in common memory. This
information is needed only by the module which generates it so
that it knows where to write it, and by the modules which read
it so that they know where to look. None of the other modules
need know, or care, when such a change is implemented. " Thus,
new microcomputers can easily be added, logical modules can be
shifted from one microcomputer to another, new functions can be
added, and even new sensor systems can be introduced with little
or no effect on the rest of the system. As long as the bus has
surplus capacity, the physical structure of the system can be
reconfigured with no changes required in the software resident
in the logical modules not directly involved in the change.

¢) Program Debugging

Furthermore, the common memory always contains a readily
accessible map of the current state of the system. This makes
it easy for a system monitor to trace the history of any or all
of the state variables, to set break points, and to reason

backwards to the source of program errors or faulty logic.

The read-compute-write-wait cycle wherein each module is a
state-machine makes it possible to stop the process at any
point, to single step through a task, and to observe in detail
the performance of the control system. This 1s extremely
important for program development and verification in a
sophisticated, real-time, sensory-interactive system in which
many processes are going on 1in. parallel at many different
hierarchical levels.

d) Single Computer Implementation

It should also be noted that a hierarchical control system
can be implemented in a single computer [10]. The architecture
of the microcomputer network can be simulated in a single program
which cycles oconce per time tick, and can be stopped, or single
stepped. The single program would consist of a set of processes,
each of which in their turn are allowed to read input variables
from a block of common memory, perform some functional operation
on those input variables, and hold their outputs in temporary
storage until all the processes have completed their read cycle.
Then each of the processes is allowed to write its output variables
into common memory. The program then cycles back to the beginning
and restarts. This is a programming technique which is often
used in process—control, systems—simulation, and multitask
modeling.

d) Simplicity

The modular, state—machine approach separates the H, M, or G
functions into simple understandable blocks of code which can be
written, debugged, and optimized independently. The modules have
a simple canonical form which makes them understandable and the
code readable. It forces a partitioning of the problem into
manageable chunks, which can be independently analyzed, reduced
to algorithms, and then reassembled into a complex intelligent
system. This provides a systematic approach to the synthesis of
intelligent behavior. :

V. Future Developments

It seems likely that it will soon be possible to design a
cross—coupled processing-generating hierarchy, similar to that
suggested in Figure 1, consisting of tens or even hundreds of
microcomputers. Such large systems are presently being contem-
plated for the control of entire factories {11]. The hierarchical
sensory—control structure makes it possible for many different
computing modules, each doing its limited assigned task to be
integrated into a coordinated system so that parts, tools, and
materials all arrive at the right place at the right time. The
correct operations can then be performed, the results inspected,

the finished work dispatched to the next work area, and a report
made to the next higher level in the hierarchy. Thus, the same
type of hierarchical control system suggested here for robots
can be extended to integrate robots, machine tools, materials
transport systems, inventory control, safety, and imspection
systems 1into a sensory-interactive goal-seeking hierarchical
computing structure for a totally automatic factory.

References

1.

2.

3.

5.

6.

Albus, J. S., "Mechanisms of Planning and Problem Solving
in the Brain,” Mathematical Biosciences 45:247-293 (1979).

Nilsson, N. J., Problem-solving Methods in Artificial Intel-
ligence, McGraw-Hill, New York, 1971.

Albus, J. S., A. J. Barbera, J. M. Evans, and G. J.
VanderBrug, "Control Concepts for Industrial Robots in an
Automatic Factory,” SME Technical Paper MS77-745, 1977.

Barrow, H. G., and Tenenbaum, J. M., "Recovering intfinsic scene
characteristies from images.” 1In Computer Vision Systems,
A. Henson and E. Riseman (Eds.) Academic Press, New York, 1978.

Perkins, W. A., "Model-Based Vision System for Scenes Containing
Multiple Parts,” 5th Int. Joint Conf. on A. I. (2) 678-684,

Ballard, D. H., C. M. Brown, J. A, Feldman, "An Approach to
Knowledge-Directed Image Analysis,” 5th Int. Joint Conf. on
A.XI. (2) 664670, 1977.

Rosenfield, A. R., R. A, Hummel, and S.W..Zucker, "Scene Labelling
by Relaxation Operations,” IEEE Trans. SMC-6, 1976, pp. 420-433,

Albus, J. S., A. J. Barbera, R. N, Nagel, "Theory and Practice of
Hierarchical Control,” Proc. National Computer Conf., Chicago, 1L,
May 4-8, 1981.

Barbera, A. J., A. S. Albus, and M. L. Fitzgerald, "Hierarchical
Control of Robots Using Microcomputers,” Proc. 9th Int.
Symp. Indus. Robots, March 13~15, 1979, p.405-422,

10. Albus, J. S., A. J. Barbera, M. L. Fitzgerald, R. N. Nagel,

G. J. VanderBrug, T. E. Wheatly, "A Measurement and Control
Model for Adaption Robots,” Proc. 10th Int. Symp. Indus.
Robots, March 5-7, 1980,

11. Barbera, A. J., "An Architecture for a Robot Hierarchical Control

System,"” National Bureau of Standards Special Pub. 500-23, 1977.

